Hejsa Per og i andre,
Nu kan jeg ikke dy mig for at blande mig,
> Birgitte Abkjær <paogba@oncable.dk> wrote:
>
>> >> Jeg har forgæves søgt efter et sted på internettet hvor jeg kan se og
>> >> få
>> >> forklaret metoderne man
>>
>> Det er fordi, de nu er blevet moderne, at eleverne selv skal finde en
>> metode, og så finde den metode, der passer bedst til hver enkel.
>>
>> Nej - det er ikke noget jeg mener, det står i faghæftet for matematik
>
> Skal man så også sætte dem til selv at opfinde hjulet, og den dybe
> tallerken?
Afsluttede matematikken sidste år på seminariet, og der blev vi også tudet
ørerne fulde med, at vi ikke måtte vise eleverne algoritmer, men at de
skulle finde deres egen algoritme. Meget inspireret af Marit Johnsen Høines:
"Begynner-opplæringen", (kan godt stave, men titlen er norsk). Jeg mener
også det står i Fælles Mål, men har lige siddet og bladret den igennem, og
kunne ikke finde det.
Der er ingen tvivl om, at hvis eleverne opbygger en grundlæggende
talforståelse, og de "opfinder" deres egne algoritmer, så vil de også
besidde
et godt værktøj til matematisk problemløsning. Giver vi som matematiklærere
eleverne en algoritme og siger, at sådan skal i bare gøre. Så er der en
risiko for, at eleverne automatiserer matematikken, men uden at have nogen
som helst forståelse for, hvordan matematikken hænger sammen. Mange ældre
mennesker har lært en masse algoritmer for hvordan de multiplicerer,
dividerer, adderer og subtraherer (gange, dividerer, lægge sammen og trække
fra), og rigtig mange kan ikke som voksen huske hvordan de dividerer på
papir eller hvordan det lige er brøker hænger sammen. De mangler
talforståelsen og har lært det jeg kalder en død-viden.
Efter min mening, så skal eleverne prøve at finde deres egen algoritme, men
de skal når de har fundet den forklare den for læreren eller kammerater,
argumentere for, hvorfor deres algoritme er smart. Når de har gjort det, så
er det helt i orden, at man som lærer viser dem andre algoritmer. Det er
utroligt underholdende, når elever der har knækket den matematiske-nød
forklarer, hvordan de har gjort. Og kan de gøre det, så mener jeg helt
klart, at de har opnået et godt matematisk værktøj i deres fremtidige
læring. Det er ikke altid de finder den "bedste" og "nemmeste" algoritme,
men har de fundet en som ikke er helt nem, så er de også tilbøjelig til at
lytte aktivt til kammerater eller læreren, og så ændre deres egen algoritme.
Det kan tage lang tid at lære nye algoritmer, men den tid vi som lærer
bruger på at lade dem "bøvle" med det, kommer til gode på et senere
tidspunkt.
Selvfølgelig mener jeg ikke, at de for en hver pris skal opfinde deres egen
algoritme. Sidder de og er vildt frustrerede, så er det da en pligt som
lærer, at prøve at lede dem frem til at kunne se logikken.
Sidder lige og skriver bachelor, så jeg har desværre ikke tid til at nærlæse
Fælles Mål for at finde en argumentation for at eleverne skal finde egne
algoritmer. Men for dem der har interesse i det, så kan jeg kun anbefale
Marit Johnsen Høines, den er desværre på norsk, men den er et godt værktøj.
> --
> Per Erik Rønne
>
http://www.RQNNE.dk
Hygge hejsa her fra
Kim J.