|
| Polplacering for butterworth funktionen Fra : Morten Møller Jørgen~ |
Dato : 26-12-03 12:43 |
|
Hej,
Hvordan ligger polerne placeret for en butterworth funktion? Jeg ved godt de
ligger placeret cirkulært, men er det en hel eller en halv cirkel. Mange
bøger tegner dem som liggende på en hel cirkel dvs. der faktisk bliver 16
poler for en 8. ordens funktion? Jeg hælder mest til den halve cirkel i det
negative halv plan.
Ligger chebyshev så plaveret på samme måde (bare eliptisk) ?
Mvh.
Morten
| |
Mathness (26-12-2003)
| Kommentar Fra : Mathness |
Dato : 26-12-03 15:29 |
|
"Morten Møller Jørgensen" <grinder213FUCKSPAM@hotmail.com> writes:
> Hvordan ligger polerne placeret for en butterworth funktion? Jeg ved godt de
> ligger placeret cirkulært, men er det en hel eller en halv cirkel. Mange
> bøger tegner dem som liggende på en hel cirkel dvs. der faktisk bliver 16
> poler for en 8. ordens funktion? Jeg hælder mest til den halve cirkel i det
> negative halv plan.
Polerne ligger til "venstre" (Re(s)<0 -> dæmpning), og antallet er
filterets orden (mm. der er "zeroes" der udligner poler).
> Ligger chebyshev så plaveret på samme måde (bare eliptisk) ?
Jeps, det samme for Bessel etc.
--
Thomas Klietsch
m a t h n e s s @ z 4 2 . d k
| |
Morten Møller Jørgen~ (26-12-2003)
| Kommentar Fra : Morten Møller Jørgen~ |
Dato : 26-12-03 16:01 |
|
> Polerne ligger til "venstre" (Re(s)<0 -> dæmpning), og antallet er
> filterets orden (mm. der er "zeroes" der udligner poler).
Hvis der er tale om en LPF funktion så er der vel ingen nuller da de alle
vil ligge i uendelig - right?
Mvh.
--
Morten
| |
Heureka (26-12-2003)
| Kommentar Fra : Heureka |
Dato : 26-12-03 18:28 |
|
Hejsa,
Polerne er ikke betinget af at sku' ligge i venstre halvplan! De kan ligge
overalt indenfor enhedscirklen (hvor filteret er stabilt).
Thomas
"Morten Møller Jørgensen" <grinder213FUCKSPAM@hotmail.com> wrote in message
news:bshifu$1fe4$1@news.cybercity.dk...
> > Polerne ligger til "venstre" (Re(s)<0 -> dæmpning), og antallet er
> > filterets orden (mm. der er "zeroes" der udligner poler).
>
> Hvis der er tale om en LPF funktion så er der vel ingen nuller da de alle
> vil ligge i uendelig - right?
>
> Mvh.
>
> --
> Morten
>
>
| |
Mathness (27-12-2003)
| Kommentar Fra : Mathness |
Dato : 27-12-03 12:00 |
|
"Morten Møller Jørgensen" <grinder213FUCKSPAM@hotmail.com> writes:
> Hvis der er tale om en LPF funktion så er der vel ingen nuller da de alle
> vil ligge i uendelig - right?
Korrekt, jeg nævnte det for at få de små detaljer med (håber ikke det
gjorde noget :) ).
--
Thomas Klietsch
m a t h n e s s @ z 4 2 . d k
| |
Heureka (27-12-2003)
| Kommentar Fra : Heureka |
Dato : 27-12-03 12:04 |
|
Det hele kommer vel egentlig an på om vi snakker analoge eller diskrete
filter...........
Thomas
"Mathness" <mathness@z42.NO.SPAM.dk> wrote in message
news:bsjol7$13bl$1@news.cybercity.dk...
> "Morten Møller Jørgensen" <grinder213FUCKSPAM@hotmail.com> writes:
>
> > Hvis der er tale om en LPF funktion så er der vel ingen nuller da de
alle
> > vil ligge i uendelig - right?
>
> Korrekt, jeg nævnte det for at få de små detaljer med (håber ikke det
> gjorde noget :) ).
>
> --
> Thomas Klietsch
> m a t h n e s s @ z 4 2 . d k
| |
Mathness (27-12-2003)
| Kommentar Fra : Mathness |
Dato : 27-12-03 12:13 |
|
"Heureka" <stoltzo@hotmail.com> writes:
> Polerne er ikke betinget af at sku' ligge i venstre halvplan! De kan ligge
> overalt indenfor enhedscirklen (hvor filteret er stabilt).
Man kan konstruere filter med poler i det "højre" halv plan, hvis man
har behov for dette. Polerne kan sagtens lige uden for enheds cirklen
uden at være ustabile, se f.eks Bessel filter.
--
Thomas Klietsch
m a t h n e s s @ z 4 2 . d k
| |
Mathness (27-12-2003)
| Kommentar Fra : Mathness |
Dato : 27-12-03 16:14 |
|
"Heureka" <stoltzo@hotmail.com> writes:
> Det hele kommer vel egentlig an på om vi snakker analoge eller diskrete
> filter...........
Så længe det er i s-plan/teoretisk/ er der ingen forskel. Man kan
eftervise at der ikke er forskel teoretisk, hvis man skulle have lyst
til dette ... :)
Men der er selvfølgelig en del man skal tage højde for når man
frembringer den fysiske konstruktion, f.eks har en op-amp "desværre"
ikke en uendelig forstærkning (hint til overstående paragraf ;p ).
--
Thomas Klietsch
m a t h n e s s @ z 4 2 . d k
| |
Heureka (29-12-2003)
| Kommentar Fra : Heureka |
Dato : 29-12-03 08:46 |
|
"Mathness" <mathness@z42.NO.SPAM.dk> wrote in message
news:bsk7hu$1pn4$1@news.cybercity.dk...
> "Heureka" <stoltzo@hotmail.com> writes:
>
> > Det hele kommer vel egentlig an på om vi snakker analoge eller diskrete
> > filter...........
>
> Så længe det er i s-plan/teoretisk/ er der ingen forskel. Man kan
> eftervise at der ikke er forskel teoretisk, hvis man skulle have lys
> til dette ... :)
Meeeen, det er jo rart at få fastlagt domænet så vi er sikrer på at der ikke
optræder misforståelser.
> Men der er selvfølgelig en del man skal tage højde for når man
> frembringer den fysiske konstruktion, f.eks har en op-amp "desværre"
> ikke en uendelig forstærkning (hint til overstående paragraf ;p ).
>
> --
> Thomas Klietsch
> m a t h n e s s @ z 4 2 . d k
| |
Heureka (29-12-2003)
| Kommentar Fra : Heureka |
Dato : 29-12-03 12:42 |
|
....og et Besselfilter med poler udenfor enhedscirklen (hvis vi er i det
diskrete domæne) og jo også ustabilt (konvergerer mod uendelig)
Du kan evt. tjekke dette i Matlab med:
[B,A]=besself(10,0.5);zplane(B,A) ; stabilt
[B,A]=besself(10,0.9999);zplane(B,A) ; ustabilt
Cheers
Thomas
"Heureka" <stoltzo@hotmail.com> wrote in message
news:3fefdbc1$0$70001$edfadb0f@dread12.news.tele.dk...
>
> "Mathness" <mathness@z42.NO.SPAM.dk> wrote in message
> news:bsk7hu$1pn4$1@news.cybercity.dk...
> > "Heureka" <stoltzo@hotmail.com> writes:
> >
> > > Det hele kommer vel egentlig an på om vi snakker analoge eller
diskrete
> > > filter...........
> >
> > Så længe det er i s-plan/teoretisk/ er der ingen forskel. Man kan
> > eftervise at der ikke er forskel teoretisk, hvis man skulle have lys
> > til dette ... :)
>
> Meeeen, det er jo rart at få fastlagt domænet så vi er sikrer på at der
ikke
> optræder misforståelser.
>
>
>
> > Men der er selvfølgelig en del man skal tage højde for når man
> > frembringer den fysiske konstruktion, f.eks har en op-amp "desværre"
> > ikke en uendelig forstærkning (hint til overstående paragraf ;p ).
> >
> > --
> > Thomas Klietsch
> > m a t h n e s s @ z 4 2 . d k
>
>
| |
|
|