|
| Flytning af geostationære satellitter Fra : Michael Nielsen |
Dato : 26-07-02 12:25 |
|
Hej,
Er der nogen, der ved hvordan geostationære satellitter flyttes fra én
position til en anden?
Jeg går ikke ud fra, man bare slår styreraketterne til og flyver afsted.
Men måske satellitten midligertidig flyttes til en anden bane?
Michael
| |
Peter Jensen (26-07-2002)
| Kommentar Fra : Peter Jensen |
Dato : 26-07-02 13:34 |
|
Michael Nielsen <michael.nielsen@tdcadsl.dk> scribbled:
> Er der nogen, der ved hvordan geostationære satellitter flyttes fra én
> position til en anden?
Er det da sket? Jeg mente ellers bare at de blev styret op i den rigtige
bane på den rigtige position, og så var det dét.
> Jeg går ikke ud fra, man bare slår styreraketterne til og flyver
> afsted. Men måske satellitten midligertidig flyttes til en anden bane?
Spørgsmålet er om der er brændstof nok til at flytte position. Hvert eneste
gram giver jo lidt længere tid i "luften". Den hyppigste dødsårsag blandt
sattelitter må være brændstofmangel, efterfulgt af solstorme/mikrometeorer.
Jeg har dog ikke statistikker til at bakke det op.
Men hvad angår banen, kommer man ikke højere op, hvis man accelererer
tangentialt? Og kommer man ikke tilbage når man bremser?
--
PeKaJe
| |
Bjarke Dahl Ebert (26-07-2002)
| Kommentar Fra : Bjarke Dahl Ebert |
Dato : 26-07-02 16:19 |
|
> Men hvad angår banen, kommer man ikke højere op, hvis man accelererer
> tangentialt? Og kommer man ikke tilbage når man bremser?
Lige præcist - og det virker ret non-intuitivt.
"Vi skal derop" tænker man og giver "giver gas" opad. Men når man regner
lidt på det, indser man jo at man ikke øger energien ved at accellerere
vikelret på bevægelsesretningen.
Den billigste måde, rent brændstofmæssigt, at øge radius i omløbscirklen på,
er netop at øge farten "momentant" for at stige i en ellipsebane, og så øge
den igen når man er oppe i max højde (på den modsatte side af
tiltrækningscentret), for ikke at fortsætte ellipsebanen tilbage til ned
udgangspunktet.
Bjarke
| |
Ricky Møhncke (27-07-2002)
| Kommentar Fra : Ricky Møhncke |
Dato : 27-07-02 16:46 |
|
> Den hyppigste dødsårsag blandt
> sattelitter må være brændstofmangel, efterfulgt af
solstorme/mikrometeorer.
> Jeg har dog ikke statistikker til at bakke det op.
Den hyppigste årsag er batterierne og da vil jeg tro solpaneler.
Brændstof bruges kun i yderste tilfælde hvis de andre stabillitetsfunktioner
under "højde kontrol" eller "Attitude control" ikke er tilstrækkeligt, evt.
ved momentum dumping.
Solstorme går ind under attitude control(orienteringen i rummet).
Mikrometeoer tror jeg ikke tages med som overvejelser, jeg kender ikke til
det, men hvis satellittten bliver ramt af meteor, så skaden antagelsesvis
stor.
--
Ricky
| |
Filip Larsen (26-07-2002)
| Kommentar Fra : Filip Larsen |
Dato : 26-07-02 22:56 |
|
Michael Nielsen skrev
> Er der nogen, der ved hvordan geostationære satellitter flyttes fra én
> position til en anden?
Man bremser/accelererer satellitten så den kommer ind i en
hurtigere/langsomere bane og derved flytter sig øst/vest i forhold til hvad
den ellers ville. Det kræver en hastighedsændring på ca. 2 m/s at flytte 1
grad per dag. Hvis man gør det i mindre hug (fx. over 4 dage) kræve det så
tilsvarende mindre hastighedsændring (her 0,5 m/s). På formel bliver det til
dV ~= 2 m/(s*deg) * dA/n
hvor dV er hastighedsændringen i m/s, dA er vinklen i grader, og n er det
hele antal dage det skal tage.
På grund af diverse forstyrrelser i banen vil en geostationær satellit
normalt bruge en del styrebrændstof på at holde sin position, og jeg kan
sagtens forstille mig en flytning måske kan udføres brændstoføkonomisk ved
at undlade at korrigere for forstyrrelser der går "den rigtige vej". Til
eksempel vil geostationære satellitter uden positionskontrol drive mod
positionerne 105W og 75E og det koster ca. 2 m/s per år at korrigere for
denne øst/vest drift. Er man "heldig" vil satellitten kunne drive den
rigtige vej af sig selv, omend meget langsomt.
På den anden side koster det ca. 50 m/s per år at holde positionen i
nord/syd, så der burde være brændstof nok til fx. en beskeden 0,1 m/s
flytning.
Mvh,
--
Filip Larsen <filip.larsen@mail.dk>
| |
Filip Larsen (26-07-2002)
| Kommentar Fra : Filip Larsen |
Dato : 26-07-02 23:18 |
|
Filip Larsen skrev
> På formel bliver det til
>
> dV ~= 2 m/(s*deg) * dA/n
>
> hvor dV er hastighedsændringen i m/s, dA er vinklen i grader, og n er det
> hele antal dage det skal tage.
Det skal lige siges, at dV her er startændringen. En tilsvarende
hastighedsændring er påkrævet til slut når satellitten når sin endelige
position. Det samlede delta-V forbrug er derfor det dobbelte, altså ca. 4
m/s per grad/dag.
Mvh,
--
Filip Larsen <filip.larsen@mail.dk>
| |
|
|