/ Forside / Karriere / Uddannelse / Højere uddannelser / Nyhedsindlæg
Login
Glemt dit kodeord?
Brugernavn

Kodeord


Reklame
Top 10 brugere
Højere uddannelser
#NavnPoint
Nordsted1 1588
erling_l 1224
ans 1150
dova 895
gert_h 800
molokyle 661
berpox 610
creamygirl 610
3773 570
10  jomfruane 570
Hvor lang tid tager et banko-spil mon
Fra : Kingo


Dato : 14-01-06 14:54

Antag at man skal arrangere et banko-spil. Man ved at der er f.eks ca.
50 spilleplader i spil, og nu vil arrangøren gerne bygge lidt ekstra
spænding op, når en eller flere spillere kun mangler et nummer for at få
pladen eller evt en række fuld.
Hvordan estimerer man mon dette tidspunkt ?
Kan man f.eks regne sig frem til at når der er udråbt f.eks 30 numre, så
er der stor sansynlighed for at en del spillere er lige ved at få banko
?
Selvfølgelig kan det ikke blive særligt præcis, men er der mon nogen som
har et bud på hvordan man estimerer varigheden af en bankospil målt i
antal opråbte numre, når man kender antallet af spilleplader som er i
spil ?
Skal man f.eks forvente at der skal opråbes 20, 40, 60 eller 80 numre
før man må forvente at der er fundet en vinder ?
mvh
kingo



 
 
Leif Neland (14-01-2006)
Kommentar
Fra : Leif Neland


Dato : 14-01-06 15:43

Kingo wrote:
> Antag at man skal arrangere et banko-spil. Man ved at der er f.eks ca.
> 50 spilleplader i spil, og nu vil arrangøren gerne bygge lidt ekstra
> spænding op, når en eller flere spillere kun mangler et nummer for at
> få pladen eller evt en række fuld.
> Hvordan estimerer man mon dette tidspunkt ?
> Kan man f.eks regne sig frem til at når der er udråbt f.eks 30 numre,
> så er der stor sansynlighed for at en del spillere er lige ved at få
> banko ?

Ikke at du kan bruge det til noget, men den gang der var bingo i alle
lokalradioerne, blev numrene ikke trukket ud af en pose, men forudberegnet,
så man havde styr over spilletiden og antal gevinster.

Der var vist noget om en station, der ikke ville købe numre af
bingomonopolet, men kørte med en pose. Da de fik en bunke, der fik bingo
samtidig, og en masse bøvl deraf, krøb de til korset.

Men jeg tror ikke det går at køre med forudberegnede numre live...

Leif



Uffe Kousgaard (14-01-2006)
Kommentar
Fra : Uffe Kousgaard


Dato : 14-01-06 16:48

En simulering med 10000 spil giver følgende:

20 plader: 73,1 tal (47 / 85)
40 plader: 70,1 tal (42 / 82)
60 plader: 68,5 tal (40 / 81)
80 plader: 67,5 tal.(44 / 79)

I parentes har jeg skrevet det mindste henh. største antal tal før en plade
var fuld. Disse er noget mere betinget af tilfældigheder end gennemsnittet.

Man kan også ud af forsøget se, at der 11% chance for banko efter senest 62
tal ved 60 plader.

hilsen
Uffe


"Kingo" <KingoPan@hotmail.dk> wrote in message
news:43c9027d$0$84021$edfadb0f@dtext01.news.tele.dk...
> Antag at man skal arrangere et banko-spil. Man ved at der er f.eks ca. 50
> spilleplader i spil, og nu vil arrangøren gerne bygge lidt ekstra spænding
> op, når en eller flere spillere kun mangler et nummer for at få pladen
> eller evt en række fuld.
> Hvordan estimerer man mon dette tidspunkt ?
> Kan man f.eks regne sig frem til at når der er udråbt f.eks 30 numre, så
> er der stor sansynlighed for at en del spillere er lige ved at få banko ?
> Selvfølgelig kan det ikke blive særligt præcis, men er der mon nogen som
> har et bud på hvordan man estimerer varigheden af en bankospil målt i
> antal opråbte numre, når man kender antallet af spilleplader som er i spil
> ?
> Skal man f.eks forvente at der skal opråbes 20, 40, 60 eller 80 numre før
> man må forvente at der er fundet en vinder ?
> mvh
> kingo
>
>



Kingo (14-01-2006)
Kommentar
Fra : Kingo


Dato : 14-01-06 16:56

Uffe Kousgaard wrote:
> En simulering med 10000 spil giver følgende:
>
> 20 plader: 73,1 tal (47 / 85)
> 40 plader: 70,1 tal (42 / 82)
> 60 plader: 68,5 tal (40 / 81)
> 80 plader: 67,5 tal.(44 / 79)
> I parentes har jeg skrevet det mindste henh. største antal tal før en
> plade var fuld. Disse er noget mere betinget af tilfældigheder end
> gennemsnittet.

Tak for det !
Det var da i hvertfald noget at tage udgangspunkt i.
Det overrasker mig at talene er så konstante. Jeg ville have troet, at
man kunne tilpasse det lidt ved f.eks at give hver spiller flere plader,
og derved forkorte hvert spils varighed. Umiddelbart ser det ud til, at
det er næsten ligegyldigt hvor mange plader der er i spil.

mvh
kingo



Uffe Kousgaard (14-01-2006)
Kommentar
Fra : Uffe Kousgaard


Dato : 14-01-06 17:08

"Kingo" <KingoPan@hotmail.dk> wrote in message
news:43c91f10$0$84037$edfadb0f@dtext01.news.tele.dk...
>
> Tak for det !
> Det var da i hvertfald noget at tage udgangspunkt i.
> Det overrasker mig at talene er så konstante. Jeg ville have troet, at man
> kunne tilpasse det lidt ved f.eks at give hver spiller flere plader, og
> derved forkorte hvert spils varighed. Umiddelbart ser det ud til, at det
> er næsten ligegyldigt hvor mange plader der er i spil.

Forskellen fra 10 til 120 plader er 76 til 66 tal i gennemsnit, så lidt sker
der da. Men det er ikke noget som for alver rykker. Og hurtigere end 40 tal
har jeg ikke set i nogen af simuleringerne.

hilsen
Uffe



Leif Neland (15-01-2006)
Kommentar
Fra : Leif Neland


Dato : 15-01-06 22:32

Kingo wrote:
> Uffe Kousgaard wrote:
>> En simulering med 10000 spil giver følgende:
>>
>> 20 plader: 73,1 tal (47 / 85)
>> 40 plader: 70,1 tal (42 / 82)
>> 60 plader: 68,5 tal (40 / 81)
>> 80 plader: 67,5 tal.(44 / 79)
>> I parentes har jeg skrevet det mindste henh. største antal tal før en
>> plade var fuld. Disse er noget mere betinget af tilfældigheder end
>> gennemsnittet.
>
> Tak for det !
> Det var da i hvertfald noget at tage udgangspunkt i.
> Det overrasker mig at talene er så konstante. Jeg ville have troet, at
> man kunne tilpasse det lidt ved f.eks at give hver spiller flere
> plader, og derved forkorte hvert spils varighed. Umiddelbart ser det
> ud til, at det er næsten ligegyldigt hvor mange plader der er i spil.
>

Det er vel noget med at de enkelte plader er uafhængige af hinanden.

Ellers skulle du modificere reglerne, så man kunne få banko ved at have to
rækker på den ene og en på den anden plade.
Og det går vist ikke

Leif



Martin Larsen (14-01-2006)
Kommentar
Fra : Martin Larsen


Dato : 14-01-06 17:18

Uffe Kousgaard fortalte:

> En simulering med 10000 spil giver følgende:
>
> 20 plader: 73,1 tal (47 / 85)
> 40 plader: 70,1 tal (42 / 82)
> 60 plader: 68,5 tal (40 / 81)
> 80 plader: 67,5 tal.(44 / 79)
>
> I parentes har jeg skrevet det mindste henh. største antal tal før en
> plade var fuld. Disse er noget mere betinget af tilfældigheder end
> gennemsnittet.
> Man kan også ud af forsøget se, at der 11% chance for banko efter
> senest 62 tal ved 60 plader.

Det stemmer meget godt med mine beregninger. Sandsyligheden for at få en
pladefuld i n træk er 75!*n!/((n-15)!*90!) idet jeg regner med 15 numre
per plade og 90 numre ialt.

Hvis du indsætter n=62 og kald resultatet r, så fås for 60 plader
1-(1-r)^60 = 0.115

Mvh
Martin
--
Entia non sunt multiplicanda praeter necessitatem


Kingo (14-01-2006)
Kommentar
Fra : Kingo


Dato : 14-01-06 17:21

Martin Larsen wrote:
>> Man kan også ud af forsøget se, at der 11% chance for banko efter
>> senest 62 tal ved 60 plader.
>
> Det stemmer meget godt med mine beregninger. Sandsyligheden for at få
> en pladefuld i n træk er 75!*n!/((n-15)!*90!) idet jeg regner med 15
> numre per plade og 90 numre ialt.
>
> Hvis du indsætter n=62 og kald resultatet r, så fås for 60 plader
> 1-(1-r)^60 = 0.115

Whau - det virker meget overbevisende. Tak for den formel
mvh
kingo



Søg
Reklame
Statistik
Spørgsmål : 177587
Tips : 31968
Nyheder : 719565
Indlæg : 6409124
Brugere : 218888

Månedens bedste
Årets bedste
Sidste års bedste