/ Forside/ Interesser / Videnskab / Kemi / Spørgsmål
Login
Glemt dit kodeord?
Brugernavn

Kodeord


Reklame
Top 10 brugere
Kemi
#NavnPoint
vagnr 1685
pbp_et 1452
beckski 1147
transor 1095
SimonGjer 965
Smokei 535
Benjamin... 530
jakjoe 524
snotbolle 500
10  thulin 470
Claus Fynbo
Fra : 3773
Vist : 690 gange
50 point
Dato : 10-05-07 19:34

Hvem af os skal lige lave et regneark

 
 
Kommentar
Fra : Nordsted1


Dato : 10-05-07 19:42


Det gør du bare

Kommentar
Fra : 3773


Dato : 10-05-07 19:45

Hedder du Claus då der då

Kommentar
Fra : Nordsted1


Dato : 10-05-07 19:52


Kært barn har mange navne

'Ej jeg skal nok smutte ud igen -- vinke smily her -

Kommentar
Fra : Claus-Fynbo


Dato : 12-05-07 07:53

Det må du meget gerne gøre



Accepteret svar
Fra : Claus-Fynbo

Modtaget 50 point
Dato : 12-05-07 08:05

Her fandt jeg opskriften:
____________________________

You can calculate the freezing point of the 40 % isopropyl alcohol/water
solution as follows:
Assume you were to end up with a kilogram (about a litre) of final
solution. This means that 400 grams of the solution would be the alcohol
component and the remainder, 600 grams, would be pure water.
The change in freezing point of the solution is the freezing point
depression constant of water (-1.86 C per mole solute per kilogram
solvent) multiplied by the solution's molality.
The molality of the solution is moles of solute (alcohol) per kilogram of
solvent.
First, calculate the moles of alcohol present: Using a chemical handbook
or atomic masses from the Periodic Table, the molar mass of isopropyl
alcohol (C3H8O) is 60 g/mol.
Four hundred grams of the alcohol would represent 400g / 60 g/mol = 6.67
moles of alcohol.
The 600 g water component represents 0.6 kilograms of solvent.
Thus, the molality of the solution is: (6.67 mol alcohol / 0.6 kg) = 11.11
molal.
As mentioned above, water's freezing point depression constant is -1.86
degrees C per mol of solute per kilogram of solvent. This means that for

every mole of solute dissolved per kilogram of solvent, the freezing point
of water drops by 1.86 C from water's actual freezing point of 0 C (32 F).
Thus, your (40 %) solution would freeze at (11.11)(-1.86) C ==> about -
20.7 C (- 5.2 F).

To do the calculation for other concentrations: Assume you are preparing
1000 grams of solution. Express the % alcohol and water in grams. For
example, a 50:50 solution would contain 500 grams of alcohol and 500 grams
of water.
As outlined above, use the formula mass of the alcohol -- in the case of
isopropyl alcohol it is 60 g/mol -- to calculate the number of moles
present in the mass of alcohol used.
For 500 g alcohol, the moles present are 500 g / 60 g/mol = 8.33 moles.
Calculate the mass of the water component in kilograms -- in this case, 0.5 kg
Solution molality = 8.33 moles alcohol per 0.5 kilogram of (water) solvent
= 16.66 molal
Next, multiply the molality of the solution by -1.86 C to find the drop in
the freezing point. As already determined immediately above, in the case
of 500 g alcohol, the molality is 16.66.
Thus, the solution freezing point is: (16.66)(-1.86C) = - 30.99 C or about
- 24 F.
The above assumes that the alcohol being used is 100 % pure. Actually, it
is not easy to purchase 100 % isopropyl alcohol because what's available
in the drugstore contains water that must be factored into the calculation
of solution molality. Even so, within limits, this procedure can serve as
a guideline.


Godkendelse af svar
Fra : 3773


Dato : 27-07-07 11:48

Tak for svaret Claus-Fynbo.

Du har følgende muligheder
Eftersom du ikke er logget ind i systemet, kan du ikke skrive et indlæg til dette spørgsmål.

Hvis du ikke allerede er registreret, kan du gratis blive medlem, ved at trykke på "Bliv medlem" ude i menuen.
Søg
Reklame
Statistik
Spørgsmål : 177577
Tips : 31968
Nyheder : 719565
Indlæg : 6409071
Brugere : 218888

Månedens bedste
Årets bedste
Sidste års bedste